This commit implements a massive refactor of the repository, and moves the build system over to use Mage (magefile.org) which should allow seamless building across multiple platforms.
524 lines
9.5 KiB
Go
524 lines
9.5 KiB
Go
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package lzma
|
|
|
|
import (
|
|
"bufio"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"unicode"
|
|
)
|
|
|
|
// node represents a node in the binary tree.
|
|
type node struct {
|
|
// x is the search value
|
|
x uint32
|
|
// p parent node
|
|
p uint32
|
|
// l left child
|
|
l uint32
|
|
// r right child
|
|
r uint32
|
|
}
|
|
|
|
// wordLen is the number of bytes represented by the v field of a node.
|
|
const wordLen = 4
|
|
|
|
// binTree supports the identification of the next operation based on a
|
|
// binary tree.
|
|
//
|
|
// Nodes will be identified by their index into the ring buffer.
|
|
type binTree struct {
|
|
dict *encoderDict
|
|
// ring buffer of nodes
|
|
node []node
|
|
// absolute offset of the entry for the next node. Position 4
|
|
// byte larger.
|
|
hoff int64
|
|
// front position in the node ring buffer
|
|
front uint32
|
|
// index of the root node
|
|
root uint32
|
|
// current x value
|
|
x uint32
|
|
// preallocated array
|
|
data []byte
|
|
}
|
|
|
|
// null represents the nonexistent index. We can't use zero because it
|
|
// would always exist or we would need to decrease the index for each
|
|
// reference.
|
|
const null uint32 = 1<<32 - 1
|
|
|
|
// newBinTree initializes the binTree structure. The capacity defines
|
|
// the size of the buffer and defines the maximum distance for which
|
|
// matches will be found.
|
|
func newBinTree(capacity int) (t *binTree, err error) {
|
|
if capacity < 1 {
|
|
return nil, errors.New(
|
|
"newBinTree: capacity must be larger than zero")
|
|
}
|
|
if int64(capacity) >= int64(null) {
|
|
return nil, errors.New(
|
|
"newBinTree: capacity must less 2^{32}-1")
|
|
}
|
|
t = &binTree{
|
|
node: make([]node, capacity),
|
|
hoff: -int64(wordLen),
|
|
root: null,
|
|
data: make([]byte, maxMatchLen),
|
|
}
|
|
return t, nil
|
|
}
|
|
|
|
func (t *binTree) SetDict(d *encoderDict) { t.dict = d }
|
|
|
|
// WriteByte writes a single byte into the binary tree.
|
|
func (t *binTree) WriteByte(c byte) error {
|
|
t.x = (t.x << 8) | uint32(c)
|
|
t.hoff++
|
|
if t.hoff < 0 {
|
|
return nil
|
|
}
|
|
v := t.front
|
|
if int64(v) < t.hoff {
|
|
// We are overwriting old nodes stored in the tree.
|
|
t.remove(v)
|
|
}
|
|
t.node[v].x = t.x
|
|
t.add(v)
|
|
t.front++
|
|
if int64(t.front) >= int64(len(t.node)) {
|
|
t.front = 0
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Writes writes a sequence of bytes into the binTree structure.
|
|
func (t *binTree) Write(p []byte) (n int, err error) {
|
|
for _, c := range p {
|
|
t.WriteByte(c)
|
|
}
|
|
return len(p), nil
|
|
}
|
|
|
|
// add puts the node v into the tree. The node must not be part of the
|
|
// tree before.
|
|
func (t *binTree) add(v uint32) {
|
|
vn := &t.node[v]
|
|
// Set left and right to null indices.
|
|
vn.l, vn.r = null, null
|
|
// If the binary tree is empty make v the root.
|
|
if t.root == null {
|
|
t.root = v
|
|
vn.p = null
|
|
return
|
|
}
|
|
x := vn.x
|
|
p := t.root
|
|
// Search for the right leave link and add the new node.
|
|
for {
|
|
pn := &t.node[p]
|
|
if x <= pn.x {
|
|
if pn.l == null {
|
|
pn.l = v
|
|
vn.p = p
|
|
return
|
|
}
|
|
p = pn.l
|
|
} else {
|
|
if pn.r == null {
|
|
pn.r = v
|
|
vn.p = p
|
|
return
|
|
}
|
|
p = pn.r
|
|
}
|
|
}
|
|
}
|
|
|
|
// parent returns the parent node index of v and the pointer to v value
|
|
// in the parent.
|
|
func (t *binTree) parent(v uint32) (p uint32, ptr *uint32) {
|
|
if t.root == v {
|
|
return null, &t.root
|
|
}
|
|
p = t.node[v].p
|
|
if t.node[p].l == v {
|
|
ptr = &t.node[p].l
|
|
} else {
|
|
ptr = &t.node[p].r
|
|
}
|
|
return
|
|
}
|
|
|
|
// Remove node v.
|
|
func (t *binTree) remove(v uint32) {
|
|
vn := &t.node[v]
|
|
p, ptr := t.parent(v)
|
|
l, r := vn.l, vn.r
|
|
if l == null {
|
|
// Move the right child up.
|
|
*ptr = r
|
|
if r != null {
|
|
t.node[r].p = p
|
|
}
|
|
return
|
|
}
|
|
if r == null {
|
|
// Move the left child up.
|
|
*ptr = l
|
|
t.node[l].p = p
|
|
return
|
|
}
|
|
|
|
// Search the in-order predecessor u.
|
|
un := &t.node[l]
|
|
ur := un.r
|
|
if ur == null {
|
|
// In order predecessor is l. Move it up.
|
|
un.r = r
|
|
t.node[r].p = l
|
|
un.p = p
|
|
*ptr = l
|
|
return
|
|
}
|
|
var u uint32
|
|
for {
|
|
// Look for the max value in the tree where l is root.
|
|
u = ur
|
|
ur = t.node[u].r
|
|
if ur == null {
|
|
break
|
|
}
|
|
}
|
|
// replace u with ul
|
|
un = &t.node[u]
|
|
ul := un.l
|
|
up := un.p
|
|
t.node[up].r = ul
|
|
if ul != null {
|
|
t.node[ul].p = up
|
|
}
|
|
|
|
// replace v by u
|
|
un.l, un.r = l, r
|
|
t.node[l].p = u
|
|
t.node[r].p = u
|
|
*ptr = u
|
|
un.p = p
|
|
}
|
|
|
|
// search looks for the node that have the value x or for the nodes that
|
|
// brace it. The node highest in the tree with the value x will be
|
|
// returned. All other nodes with the same value live in left subtree of
|
|
// the returned node.
|
|
func (t *binTree) search(v uint32, x uint32) (a, b uint32) {
|
|
a, b = null, null
|
|
if v == null {
|
|
return
|
|
}
|
|
for {
|
|
vn := &t.node[v]
|
|
if x <= vn.x {
|
|
if x == vn.x {
|
|
return v, v
|
|
}
|
|
b = v
|
|
if vn.l == null {
|
|
return
|
|
}
|
|
v = vn.l
|
|
} else {
|
|
a = v
|
|
if vn.r == null {
|
|
return
|
|
}
|
|
v = vn.r
|
|
}
|
|
}
|
|
}
|
|
|
|
// max returns the node with maximum value in the subtree with v as
|
|
// root.
|
|
func (t *binTree) max(v uint32) uint32 {
|
|
if v == null {
|
|
return null
|
|
}
|
|
for {
|
|
r := t.node[v].r
|
|
if r == null {
|
|
return v
|
|
}
|
|
v = r
|
|
}
|
|
}
|
|
|
|
// min returns the node with the minimum value in the subtree with v as
|
|
// root.
|
|
func (t *binTree) min(v uint32) uint32 {
|
|
if v == null {
|
|
return null
|
|
}
|
|
for {
|
|
l := t.node[v].l
|
|
if l == null {
|
|
return v
|
|
}
|
|
v = l
|
|
}
|
|
}
|
|
|
|
// pred returns the in-order predecessor of node v.
|
|
func (t *binTree) pred(v uint32) uint32 {
|
|
if v == null {
|
|
return null
|
|
}
|
|
u := t.max(t.node[v].l)
|
|
if u != null {
|
|
return u
|
|
}
|
|
for {
|
|
p := t.node[v].p
|
|
if p == null {
|
|
return null
|
|
}
|
|
if t.node[p].r == v {
|
|
return p
|
|
}
|
|
v = p
|
|
}
|
|
}
|
|
|
|
// succ returns the in-order successor of node v.
|
|
func (t *binTree) succ(v uint32) uint32 {
|
|
if v == null {
|
|
return null
|
|
}
|
|
u := t.min(t.node[v].r)
|
|
if u != null {
|
|
return u
|
|
}
|
|
for {
|
|
p := t.node[v].p
|
|
if p == null {
|
|
return null
|
|
}
|
|
if t.node[p].l == v {
|
|
return p
|
|
}
|
|
v = p
|
|
}
|
|
}
|
|
|
|
// xval converts the first four bytes of a into an 32-bit unsigned
|
|
// integer in big-endian order.
|
|
func xval(a []byte) uint32 {
|
|
var x uint32
|
|
switch len(a) {
|
|
default:
|
|
x |= uint32(a[3])
|
|
fallthrough
|
|
case 3:
|
|
x |= uint32(a[2]) << 8
|
|
fallthrough
|
|
case 2:
|
|
x |= uint32(a[1]) << 16
|
|
fallthrough
|
|
case 1:
|
|
x |= uint32(a[0]) << 24
|
|
case 0:
|
|
}
|
|
return x
|
|
}
|
|
|
|
// dumpX converts value x into a four-letter string.
|
|
func dumpX(x uint32) string {
|
|
a := make([]byte, 4)
|
|
for i := 0; i < 4; i++ {
|
|
c := byte(x >> uint((3-i)*8))
|
|
if unicode.IsGraphic(rune(c)) {
|
|
a[i] = c
|
|
} else {
|
|
a[i] = '.'
|
|
}
|
|
}
|
|
return string(a)
|
|
}
|
|
|
|
// dumpNode writes a representation of the node v into the io.Writer.
|
|
func (t *binTree) dumpNode(w io.Writer, v uint32, indent int) {
|
|
if v == null {
|
|
return
|
|
}
|
|
|
|
vn := &t.node[v]
|
|
|
|
t.dumpNode(w, vn.r, indent+2)
|
|
|
|
for i := 0; i < indent; i++ {
|
|
fmt.Fprint(w, " ")
|
|
}
|
|
if vn.p == null {
|
|
fmt.Fprintf(w, "node %d %q parent null\n", v, dumpX(vn.x))
|
|
} else {
|
|
fmt.Fprintf(w, "node %d %q parent %d\n", v, dumpX(vn.x), vn.p)
|
|
}
|
|
|
|
t.dumpNode(w, vn.l, indent+2)
|
|
}
|
|
|
|
// dump prints a representation of the binary tree into the writer.
|
|
func (t *binTree) dump(w io.Writer) error {
|
|
bw := bufio.NewWriter(w)
|
|
t.dumpNode(bw, t.root, 0)
|
|
return bw.Flush()
|
|
}
|
|
|
|
func (t *binTree) distance(v uint32) int {
|
|
dist := int(t.front) - int(v)
|
|
if dist <= 0 {
|
|
dist += len(t.node)
|
|
}
|
|
return dist
|
|
}
|
|
|
|
type matchParams struct {
|
|
rep [4]uint32
|
|
// length when match will be accepted
|
|
nAccept int
|
|
// nodes to check
|
|
check int
|
|
// finish if length get shorter
|
|
stopShorter bool
|
|
}
|
|
|
|
func (t *binTree) match(m match, distIter func() (int, bool), p matchParams,
|
|
) (r match, checked int, accepted bool) {
|
|
buf := &t.dict.buf
|
|
for {
|
|
if checked >= p.check {
|
|
return m, checked, true
|
|
}
|
|
dist, ok := distIter()
|
|
if !ok {
|
|
return m, checked, false
|
|
}
|
|
checked++
|
|
if m.n > 0 {
|
|
i := buf.rear - dist + m.n - 1
|
|
if i < 0 {
|
|
i += len(buf.data)
|
|
} else if i >= len(buf.data) {
|
|
i -= len(buf.data)
|
|
}
|
|
if buf.data[i] != t.data[m.n-1] {
|
|
if p.stopShorter {
|
|
return m, checked, false
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
n := buf.matchLen(dist, t.data)
|
|
switch n {
|
|
case 0:
|
|
if p.stopShorter {
|
|
return m, checked, false
|
|
}
|
|
continue
|
|
case 1:
|
|
if uint32(dist-minDistance) != p.rep[0] {
|
|
continue
|
|
}
|
|
}
|
|
if n < m.n || (n == m.n && int64(dist) >= m.distance) {
|
|
continue
|
|
}
|
|
m = match{int64(dist), n}
|
|
if n >= p.nAccept {
|
|
return m, checked, true
|
|
}
|
|
}
|
|
}
|
|
|
|
func (t *binTree) NextOp(rep [4]uint32) operation {
|
|
// retrieve maxMatchLen data
|
|
n, _ := t.dict.buf.Peek(t.data[:maxMatchLen])
|
|
if n == 0 {
|
|
panic("no data in buffer")
|
|
}
|
|
t.data = t.data[:n]
|
|
|
|
var (
|
|
m match
|
|
x, u, v uint32
|
|
iterPred, iterSucc func() (int, bool)
|
|
)
|
|
p := matchParams{
|
|
rep: rep,
|
|
nAccept: maxMatchLen,
|
|
check: 32,
|
|
}
|
|
i := 4
|
|
iterSmall := func() (dist int, ok bool) {
|
|
i--
|
|
if i <= 0 {
|
|
return 0, false
|
|
}
|
|
return i, true
|
|
}
|
|
m, checked, accepted := t.match(m, iterSmall, p)
|
|
if accepted {
|
|
goto end
|
|
}
|
|
p.check -= checked
|
|
x = xval(t.data)
|
|
u, v = t.search(t.root, x)
|
|
if u == v && len(t.data) == 4 {
|
|
iter := func() (dist int, ok bool) {
|
|
if u == null {
|
|
return 0, false
|
|
}
|
|
dist = t.distance(u)
|
|
u, v = t.search(t.node[u].l, x)
|
|
if u != v {
|
|
u = null
|
|
}
|
|
return dist, true
|
|
}
|
|
m, _, _ = t.match(m, iter, p)
|
|
goto end
|
|
}
|
|
p.stopShorter = true
|
|
iterSucc = func() (dist int, ok bool) {
|
|
if v == null {
|
|
return 0, false
|
|
}
|
|
dist = t.distance(v)
|
|
v = t.succ(v)
|
|
return dist, true
|
|
}
|
|
m, checked, accepted = t.match(m, iterSucc, p)
|
|
if accepted {
|
|
goto end
|
|
}
|
|
p.check -= checked
|
|
iterPred = func() (dist int, ok bool) {
|
|
if u == null {
|
|
return 0, false
|
|
}
|
|
dist = t.distance(u)
|
|
u = t.pred(u)
|
|
return dist, true
|
|
}
|
|
m, _, _ = t.match(m, iterPred, p)
|
|
end:
|
|
if m.n == 0 {
|
|
return lit{t.data[0]}
|
|
}
|
|
return m
|
|
}
|